SPEED SENSORS

SPEED SENSORS FOR TOOTHED WHEELS

- Aligned mounting •
- For teeth $\geq 2 \text{ mm}$
 - Cable output •

Diamete	er	M12 x 1	M18 x 1
NL	Size	SW17	SW24
1101	Thickness mm	4	4
Max tig torque l	htening Nm	20	50

Materials:

- Cable:
- Housing:
- Back cap: •

2 m thermoplastic, 300 V; O.R. stainless steel plastic

Mounting and teeth dimension:

The sensor axis must be perpendicular to the rotation axis of the gear. Flat faces must be parallel to the rotation plane of the gear.

Valley depth	ht	> 2 mm
Valley width	V	> 2 mm
Tooth width	Т	> 2 mm
Gear tickness	F	> 3 mm
Operating distance	S	0 ÷1,5 mm

General Features:

This sensor allows the detection with extremely high precision of the rotation of a ferrous toothed wheel and reference marks. The frequency of the digital output signal is proportional to the rotation speed starting from zero. The output is open collector. The extremely strong construction allows the use in the most difficult conditions even with high pressures on the housing. The sensor must be aligned to the rotation axis of the wheel.

Technical data:

- Supply voltage: No load supply current:
- Voltage drop:
- Temperature range max:
 - Degree of protection:
 - Max pressure on front side:
- Protected against short-circuit and overload
- Protected against any wrong connection
- Electromagnetic compatibility (EMC) according to EN60947-5-2
- Shock and vibration resistance according to EN60068-2-27 EN60068-2-6 0,35 mm² on 12 mm 0,50 mm² on 18 mm •
 - Cable conductor cross section:

						e ster		tching :y (f)	rational (I _e)	ORDE REFER	RING ENCES				
lsing	L1	L2	L3	L4	L4	L5	L5	L5 <u>-9 m</u> 	Bod (d	Bod (d	k swi	tuenc poe		PNP	NPN
Hot						-0	-0	Max	Rated cu	M + brown +	M brown +				
	mm	mm	mm	mm	mm	mm	mm	KHz	mA						
B-12	-	-	-	-	35	4	M12 x 1	20	100	BRS12X/4609KJ	BRS12X/4608KJ				
B-13		-	-		35	5	M18 x 1	20	100	BRS18X/4609KJ	BRS18X/4608KJ				

5 ÷ 25 Vdc

- 40 ÷ +120°C

≤ 17 mA

≤ 0,4 V

150 bar

IP68

SPEED SENSORS FOR TOOTHED WHEELS

- Non aligned mounting
- For teeth $\ge 5 \text{ mm}$
- Cable output
- Housing B-12

Diamet	er	M12 x 1	M18 x 1
NLut	Size	SW17	SW24
	Thickness mm	4	4
Max tig torque	htening Nm	20	50

2 m thermoplastic, 300 V; O.R.

stainless steel

plastic

Materials:

Cable:

- Housing:
- Back cap:

Mounting and teeth dimension

The sensor axis must be perpendicular to the rotation axis of the gear. Flat faces can be at any position respect the rotation plane of the gear.

ht	≥5 mm
V	≥ 13 mm
Т	≥ 5 mm
F	≥ 5 mm
S	0 ÷1,5 mm
	ht V T F S

General Features:

This sensor allows the detection with extremely high precision of the rotation of a ferrous toothed wheel and reference marks. Since it detects even frontal approaching of the target, it can be used as proximity switch. The frequency of the digital output signal is proportional to the rotation speed starting from zero. The output is open collector. The extremely strong construction allows the use in the most difficult conditions even with high pressures on the housing. The sensor does not require any alignement to the rotation axis of the wheel.

Technical data:

- Supply voltage:
- No load supply current:
- Voltage drop:
- Max temperature range: Degree of protection:
- Max pressure on front side:
- Protected against short-circuit and overload Protected against any wrong connection
- Electromagnetic compatibility (EMC) according to EN60947-5-2
- Shock and vibration resistance according to EN60068-2-27 EN60068-2-6 •
 - Cable conductor cross section:

0,35 mm² on 12 mm 0,50 mm² on 18 mm

5 ÷ 25 Vdc

- 40° ÷ + 120° C

≤ 12 mA

≤ 0,4 V

IP68 150 bar

						ater ster		tching ncy	rational int	ORDE REFER	ERING ENCES
Jsing	L1	L2	L3	L4	L5	Cab	Bod (d	x swi eque (f)	l ope curre (l _e	PNP	NPN
Ę						0	0	Х Т	Ratec	M K black +	M brown +
	mm	mm	mm	mm	mm	mm	mm	KHz	mA		
B-12	-	-	-	-	35	4	M12 x 1	25	100	BRUS12X/4609KJ	BRUS12X/4608KJ
B-13	-	-			35	5	M18 x 1	25	100	BRUS18X/4609KJ	BRUS18X/4608KJ

•

SPEED SENSORS FOR TOOTHED WHEELS

Double output A + B •

Cable output •

Diamete	er	M12 x 1	M18 x 1	
NLut	Size	SW17	SW24	
1101	Thickness mm	4	4	
Max tig torque	htening Nm	20	50	

2 m thermoplastic, 300 V; O.R.

stainless steel

plastic

Materials:

- Cable: ٠
- Housing:
- Back cap: •

Mounting and teeth dimension

The sensor axis must be perpendicular to the rotation axis of the gear. Flat faces must be parallel to the rotation plane of the gear.

Valley depth	ht	≥ 3 mm	
Valley width	٧	≥ 3 mm	
Tooth width	T	≥ 3 mm	
Gear tickness	F	≥ 6 mm	
Operating distance	S	0 ÷1,5 mm	

		-

General Features:

This sensor gives two separated signals shifted which allow to detect not only the rotation speed but also the direction of a ferrous toothed wheel or reference marks. The frequencies of the digital output signals are proportional to the rotation speed starting from zero. The outputs are NPN open collector. The extremely strong construction allows the use in the most difficult conditions even with high pressures on the housing. The sensor must be aligned to the rotation axis of the wheel.

Tec	hnica	l data	1
-			

- Supply voltage:
- No laad supply current:
- Voltage drop (l_o=10mA)
- Temperature range:
- Degree of protection:
- Max pressure on front side:
- Protected against short-circuit and overload
- Protected against any wrong connection Electromagnetic compatibility (EMC) according to EN60947-5-2
- Shock and vibration resistance according to EN60068-2-27 EN60068-2-6 0,25 mm²
- Cable conductor cross section:

						le ster) eter	tching y (f)	rrational (I _e)	ORDERING REFERENCES
Jsing	11	L2	L3	L4	L5	C ab liame	Bod (d	x swi quenc	l ope	NPN
Hot						0	0	Mar	Rated cu	
	mm	mm	mm	mm	mm	mm	mm	KHz	mA	
B-12	-	-	-	-	35	4	M12 x 1	6	20	BRDS12X/4628KJ
B-13	-	-	-	-	35	5	M18 x 1	6	20	BRDS18X/4628KJ

5 ÷ 25 Vdc

- 40 ÷ +120°C

≤21 mA

≤ 1,2 V

150 bar

IP68

SPEED SENSORS

- Speed sensors with integrated control
- 3 wires d.c.
- Connector output M12 x 1

Housing I-11 M12 x 1 3

Housing I-2 L5 L2 L3_L4 LI 3(•••) M12 x 1 d 4 x LED

Diamete	er	M8 x 1	M12 x 1	M18 x 1	M30 x 1,5
Nut	Size	SW13	SW17	SW24	SW36
	Thickness mm	4	4	4	5
Max tig torque	htening Nm	10	15	35	80

stainless steel

plastic

nickel plated brass

Materials:

- Housing 8 mm:
- Housing 12 18 30 mm:
- Sensing face:

General Features:

These sensors allow to control with extremely high precision the rotation of a toothed wheel or reference marks, switching off the load or giving an alarm in case the speed goes down the minimum threshold. Thanks to the extremely wide measuring range they can be even used to control repetitive operations, signalling in case of unavoided stops. Further delays or other special functions are implementable upon specific request.

The output is protected against connection mistakes, overvoltages on lines, and short circuit of the load. The connection is possible with a 4 wires M12x1 connector which must be ordered separately.

Technical data:

 Working voltage: 	10 ÷ 30 Vdc
 Max ripple: 	10%
No-load supply current:	<15 mA
 Rated operational current (I_a): 	200 mA
Voltage drop:	< 1,5 V
 Switching hysteresis (H): 	<10% Sn
 Repeat accuracy (R): 	< 2% Sn
 Maximum detectable interval (between two pulses): 	2 min
 Detectable start-up time (T1): 	0 ÷1 min (default 2 sec.)
Temperature range:	- 20 ÷ + 70°C
 Max thermal drift of sensing distance S_n: 	±10%
 Degree of protection: 	IP67
 Status indicator: yellow LED = out ON; f 	requency over the threshold
Protocted against short circuit and overlagd	

- against short-circuit Electromagnetic compatibility (EMC) according to EN60947-5-2 CE
- Shock and vibration resistance according to EN60068-2-27 e EN60068-2-6

	ting unting		10				ale sctor le H -1)) eter	able ency	sensing S _n)±10%	ORDERING REFERENCES
lousing	om hsu	LI	12	L3	L4	15	Fem conne æ pag	diam (d	detect	ominal ance (3	PNP (positive switching)
<u>т</u>	Flush on flu						(se			<u>dist</u>	1 brown 2 white + Heach +
	Z	mm	mm	mm	mm	mm	n°	mm	kHz	mm	
1-11	•	-	40	12	8	60	6-8B-10	M8 x 1	1	1,5	DSD8/4309KS
-	•	5	35	12	8	60	6 - 8B - 10	M8 x 1	I	2,5	DSD8/5309KS
I-7	•	-	43	15	8	66	6 - 8B -10	M12 x 1	1	2	DSD12/4309KS
I-7	•	7	36	15	8	66	6 - 8B -10	M12 x 1	1	4	DSD12/5309KS
I-12	•	-	50	19	8	77	6 - 8B -10	M18 x 1	1	5	DSD18/4309KS
1-12	•	10	50	19	8	87	6 - 8B -10	M18 x 1	1	8	DSD18/5309KS
I-2	•	-	65	17	8	90	6-8B-10	M30 x 1,5	0,8	10	DSD30/4309KS
I-2	•	15	50	17	8	90	6 - 8B -10	M30 x 1,5	0,4	15	DSD30/5309KS

Use of the sensor:

On power on, the yellow LED goes on and the output switches in ON state, driving the relay, which will drive the motor. After a start up delay time (T1) the sensor measures the speed of the motor and compare it to the threshold value. If the speed is under the threshold value, the output goes OFF, turning off the LED. The minimum threshold can be either factory presetted or can be acquired from the sensor directly on the application with no need to perform any measurement.

Threshold self-teaching procedure:

There are two different ways to perform the self-teaching of the threshold:

1- Acquisition of start up time and calculation of the threshold from the maximum speed:

- a) connect the Teach input (white) to the positive of power supply (brown) before to turn on the power
- b) Turn on the power supply to the machine and to the sensor and wait the speed gets the nominal value
- c) Turn off the power supply
- d) At this stage the sensor acquired the start up time (T1) and calculated the threshold as the maximum value of the speed reduced of -20%
- e) Disconnect the Teach in from the positive of power supply before to run the machine again.

2 - Acquisition of a known threshold (start up time is not modified):

- a) Turn the power supply on to the machine and sensor and go to the speed you want to get as threshold (th)
- b) Connect temporarily the Teach input (white) to the positive of power supply. This operation can be easily done with a push-button on the operator panel of the machine.
- c) At this stage the current speed becomes the minimum threshold (th), under of which the sensor goes in OFF state.

Both of the procedures can be repeated unlimited times.

SPEED SENSORS

• Speed sensors with integrated control

- 2 wires a.c.
- Cable output

Housing C L5 LI L2 L3 I FD

Diameter			M18 x 1	M30 x 1,5
	Nut	Size	SW24	SW36
		Thickness mm	4	5
	Ma to	ix tightening orque Nm	35	80

Materials:

Cable:

Housing: Sensing face:

2m PVC - CEI 2022 II- 90°C 300V-O.R. nickel plated brass plastic

General Features:

These sensors allow to control with extremely high precision the rotation of a toothed wheel or reference marks, switching off the load in case of the speed goes down the minimum threshold. Thanks to the extremely wide measuring range they can be even used to control repetitive operations, signalling in case of unavoided stops. They are able to drive directly a.c. relais from 90 to 240 Vac with no need of external power supply or amplifiers.

Further delays or other special functions are implementable upon specific request. The output is protected against connection mistakes, overvoltages on lines, and short circuit of the load.

Technical data:

 Working voltage: 		90 ÷ 240 Vac
• Electrical system frequency:		40 ÷ 60 Hz
• Off-state current at 220 V:		<2,2 mA
 Minimum operational currer 	nt:	8 mA
Voltage drop:		<8V
• Switching hysteresis (H):		< 10% Sn
Repeat accuracy (R):		< 2% Sn
 Maximum detectable intervo 	al (between two pulses):	2 min
 Detectable start-up time (T1) 		0 ÷1 min (default 2 sec.)
Temperature range:		-20 ÷ +70°Ć
 Max thermal drift of sensing 	distance S _n :	±10%
• Degree of protection:		IP67
 Cable conductor cross section 	on:	0,50mm ²
• Status indicator:	yellow LED = out ON; fre	equency over the threshold

- red LED = out OFF; frequency under the threshold blinking red LED = out OFF; short circuit on the output

- Protected against short-circuit and overload Class 2 equipment according to IEC 536 Shock and vibration according to EN60068-2-27 EN60068-2-6 Electromagnetic compatibility (EMC) according to EN60947-5-2 •
- •

using	nounting n mounting	L1	L1 L2	L2	L2	L2	L2	L2	L2	L2	L2	L2	L2	L2	L3	L4	L5	Cable diameter	Body diameter (d)	Max etectable equency	d operational urrent (I _e)	inal sensing tance (Sn) ± 10%	ORDERING REFERENCES
Ч	Flush n Jon flush						0	Ũ		Ratec	Nom sib	block theorem 90 + 240 Voc											
	2	mm	mm	mm	mm	mm	mm	mm	Hz	mA	mm	∠ L∕., blue ~											
C C	•.	- 10	58 48	12 12	-	70 70	5 5	M18 x 1 M18 x 1	800 400	200 200	5 8	ASD18/4609KS ASD18/5609KS											
G G	••••	- 15	50 35	10 10		60 60	6 6	M30 x 1,5 M30 x 1,5	400 200	200 200	10 15	ASD30/4609KS ASD30/5609KS											

Use of the sensor:

On power on, the yellow LED goes on and the output switches in ON state, driving the relay, which will drive the motor. After a start up delay time (T1) the sensor measures the speed of the motor and compare it to the threshold value. If the speed is under the threshold value, the output goes OFF, giving an alarm indication with the red LED. The minimum threshold can be either factory presetted or can be acquired from the sensor directly on the application with no need to perform any measurement.

Threshold self-teaching procedure:

There are two different ways to perform the self-teaching of the threshold:

- 1 Acquisition of start up time and calculation of the threshold from the maximum speed:
 - a) connect the Teach input (black) to the brown before to turn on the power
 - b) Turn on the power supply to the machine and to the sensor and wait the speed gets the nominal value
 - c) Turn off the power supply
 - d) At this stage the sensor acquired the start up time (T1) and calculated the threshold as the maximum value of the speed reduced of -20%
 - e) Disconnect the Teach in from the brown wire before to run the machine again.

2 - Acquisition of a known threshold (start up time is not modified):

- a) Turn the power supply on to the machine and sensor and go to the speed you want to get as threshold (th).
- b) Connect temporarily the Teach input (black) to the bown wire. This operation can be easily done with a push-button on the operator panel of the machine.
- c) At this stage the current speed becomes the minimum threshold (th), under of which the sensor goes in OFF state.

Both of the procedures can be repeated unlimited times.

ACCELERATION SENSORS

Acceleration is a physical quantity related to any event of motion, rotation, vibration and inclination. Monitoring accelerations is an optimal way to gather reliable information on working process. Generally these information cannot be easily obtained by other sensor systems.

This kind of information is useful to make reliable automatic control diagnostic and supervision systems.

Accelerometers are inertial sensors that supply proportional electrical signal to accelerations applied to the device in specific directions.

Signal analysis and calculations are performed internally by the sensor, not requiring then external additional modules or software. The application is therefore very simple.

ACCELERATION SENSORS

- 2 AXIS INCLINATION SENSORS (- $60^{\circ} \div + 60^{\circ}$)
 - Analog linear output
 - Cable output •

Materials:

- Cable: •
- Housing:

2 m PVC CEI 20 - 22 II; 90°C plastic

General Features:

These sensors give two output signals from 0,7 to 4,3 V proportional to the inclina-tion of the X and Y axis respect the earth axis. An inclination of 0° gives on the out-puts + 2,5 V respect to the negative of power supply (blue wire) or 0 V respect to the OUT zero.

Other outputs such as temperature and ON/OFF alarms, which are factory presetted at specified thresholds, are available upon request.

Applications:

- Inclination control on lifting systems
- Vehicles inclination monitoring
- Feedback sensor on self-levelling systems

Technical data:

Measuring range:	$-60^{\circ} \div + 60^{\circ}$
Kesolution:	0,Z
• Power consumption:	≤ 10 mA
 Output voltage range: 	
respect to - V:	0,7 ÷ 4,3 V
respect to Out zero:	- 1,8 ÷ + 1,8 V
Sensitivity:	0,03 V/°
 Max thermal drift: 	4,5 m V/°C
 Output resistance: 	100 Ω
 Response time: 	0,1 sec
Linearity:	< 1% full scale
 Hysteresis: 	< 0,2% full scale
 Cross axis sensitivity: 	< ± 2%
 Maximum survival shock: 	1000 g
 Working temperature: 	0 ÷ 70° Č
 Storage temperature: 	- 20° ÷ 100° C
 Degree of protection: 	IP67
 Cable conductor cross section 	$0,22 \text{ mm}^2 + \text{shield}$
 LED indication: 	areen = supply voltage

Shock and vibration resistance according to EN60068-2-27 EN60068-2-6

Electromagnetic compatibility (EMC) according to EN61000-6-2/-4 ᢗ •

Туре	Cable diameter	ORDERING REFERENCES		
	mm			
Biaxial	5	ISX/26605		

ACCELERATION SENSORS

- 2 AXIS VIBRATION SENSORS
- Average value output
- Cable output

Connection diagram

Materials:

Cable:

Housing:

2 m PVC CEI 20 - 22 II; 90°C plastic

General Features:

These sensors give an analog signal proportional to the vibrations on both the X and Y axis. Since the measurement is made from a very low frequency, the gravity acceleration is not detected, so the measurement is not affected by the mounting position. The output voltage from 0 to 5 V is proportional to the average value of the sum of the accelerations measured on the X and Y axis. Other outputs such as temperature and ON/OFF alarms, which are factory presetted at specific thresholds, are available upon request.

Applications:

- Alarm or feedback on the control for excessive vibrations Shock and collision ampitude indication
- Harmful unbalancing detection of the tool and tool holder in milling and grinding machines.

Technical data:

Measuring range:	± 2; ±5; ± 18 g
Supply voltage:	8 ÷ 30 Vdc
Power consumption:	≤ 12 mA
Output voltage range:	0 ÷ 5 V
Sensitivity:	
´ - 2 g full scale: - 5 g full scale: - 18 g full scale:	2,5 V/g 1 V/g 0,27 V/g
Output resistance:	100 Ω
Frequency range:	2 ÷ 500 Hz
Cross axis sensitivity:	< ± 2 %
Maximum survival shock:	1000 g
Working temperature:	- 20° ÷ + 70° Č
Storage temperature:	- 40° ÷ + 100° C
Degree of protection:	IP67
Cable conductor cross section:	0,35 mm ² + shield
LED indication:	green = power supply
	yellow = vibration level >1% full scale
	Measuring range: Supply voltage: Power consumption: Output voltage range: Sensitivity: - 2 g full scale: - 5 g full scale: - 18 g full scale: Output resistance: Frequency range: Cross axis sensitivity: Maximum survival shock: Working temperature: Storage temperature: Degree of protection: Cable conductor cross section: LED indication:

• Shock and vibration resistance according to EN60068-2-27 EN60068-2-6

Electromagnetic compatibility (EMC) according to EN61000-6-2/-4 ᢗ •

Туре	Cable diameter	Full scale measure	ORDERING REFERENCES	
	mm	g		
Biaxial	5	2 g	VSX/2602S	
Biaxial	5	5 g	VSX/2605S	
Biaxial	5	18 g	VSX/2618S	

BDC Electronic - Viale Lidice, 37/39 - 10095 Grugliasco (To) - Italy -Tel. (+39)011.31.49.021/022 Fax (+39) 011.31.49.023 - www.bdcelectronic.com - E-mail:bdc@bdcelectronic.com